skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoffman, Jennifer_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT WR21 and WR31 are two WR + O binaries with short periods, quite similar to the case of V444 Cyg. The XMM-Newton observatory has monitored these two objects and clearly revealed phase-locked variations as expected from colliding winds. The changes are maximum in the soft band (0.5–2.0 keV, variations by a factor 3–4) where they are intrinsically linked to absorption effects. The increase in absorption due to the dense WR wind is confirmed by the spectral analysis. The flux maximum is however not detected exactly at conjunction with the O star in front but slightly afterwards, suggesting Coriolis deflection of the collision zone as in V444 Cyg. In the hard band (2–10 keV), the variations (by a factor of 1.5–2.0) are much more limited. Because of the lower orbital inclinations, eclipses as observed for V444 Cyg are not detected in these systems. 
    more » « less